Quaternion-based dynamic mode decomposition for background modeling in color videos
نویسندگان
چکیده
Scene Background Initialization (SBI) is one of the challenging problems in computer vision. Dynamic mode decomposition (DMD) a recently proposed method to robustly decompose video sequence into background model and corresponding foreground part. However, this needs convert color image grayscale for processing, which leads neglect coupling information between three channels image. In study, we propose quaternion-based DMD (Q-DMD), extends by quaternion matrix analysis, so as ultimately preserve inherent structure video. We exploit standard eigenvalues compute its spectral calculate Q-DMD modes eigenvalues. The results on publicly available benchmark datasets prove that our outperforms exact method, experiment also demonstrate performance approach comparable state-of-the-art ones.
منابع مشابه
The Modified Bidimensional Empirical Mode Decomposition for Color Image Decomposition
This paper presents two proposed approaches to color image decomposition with Bidimensional Empirical Mode Decomposition (BEMD) technique. The first one applies the BEMD on each channel separately and the second is based on interpolation of each channel in the sifting process. The application of the two methods shows the same performance of each approach in terms of PSNR and visual quality, but...
متن کاملAn Intelligent Machine Learning-Based Protection of AC Microgrids Using Dynamic Mode Decomposition
An intelligent strategy for the protection of AC microgrids is presented in this paper. This method was halving to an initial signal processing step and a machine learning-based forecasting step. The initial stage investigates currents and voltages with a window-based approach based on the dynamic decomposition method (DDM) and then involves the norms of the signals to the resultant DDM data. T...
متن کاملRandomized Dynamic Mode Decomposition
This paper presents a randomized algorithm for computing the near-optimal low-rank dynamic mode decomposition (DMD). Randomized algorithms are emerging techniques to compute low-rank matrix approximations. They are able to ease the computational challenges arising in the area of ‘big data’. The idea is to derive from the high-dimensional input matrix a smaller matrix, which is then used to effi...
متن کاملBayesian Dynamic Mode Decomposition
Dynamic mode decomposition (DMD) is a datadriven method for calculating a modal representation of a nonlinear dynamical system, and it has been utilized in various fields of science and engineering. In this paper, we propose Bayesian DMD, which provides a principled way to transfer the advantages of the Bayesian formulation into DMD. To this end, we first develop a probabilistic model correspon...
متن کاملGraph-based Visual Saliency Model using Background Color
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Vision and Image Understanding
سال: 2022
ISSN: ['1090-235X', '1077-3142']
DOI: https://doi.org/10.1016/j.cviu.2022.103560